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The shroud on the beam-waveguide (BWG) antenna at DSS 13 is made from

highly magnetic American Society for Testing and Materials (ASTM) A36 steel.
Measurements at 8.42 Gltz showed that this material (with paint) has a very poor

electrical conductivity that is 600 times worse than aluminum. In cases where the

BWG mirrors might be slightly misaligned, unintentional illumination and poor

electrical conductivity of the shroud walls can cause system noise temperature to

be increased significantly. This potential increase of noise temperature contribution

can be reduced through the use of better conductivity materials for the shroud
wails. An alternative is to attempt to improve the conductivity of the currently

used ASTM A36 steel by means of some type of plating, surface treatment, or

high-conductivity paints. This article presents the results of a study made to find

improved materials for future shrouds and mirror supports.

h Introduction

The technique used to measure the resistivity of flat

stock materials at microwave frequencies was the cavity

technique described in [1,2]. Resistivity data on previ-

ously measured samples of various metals and plated sur-

faces have been previously presented in [1-4]. Figure 1

shows the X-band cavity that was used for these measure-
ments. The measurement technique involves placing a flat

plate sample of the material to be tested on top of an open

cylindrical cavity operating in the TE011 mode. Resistiv-

ity is determined from measured loaded- and unloaded-Q

at a nominal frequency of 8.420 GHz. Slight deviations

from perfect flatness of the test sample will cause this cen-
ter frequency of the test to deviate slightly from nominal.

Electrical conductivity is calculated from the measured re-

sistivity using an equation given in [2]. Although electrical

conductivities of metals theoretically are frequency inde-

pendent, in practice when surface roughness becomes a
significant fraction of skin depth, the electrical conduc-

tivities (that are determined from measured resistivities)

could be somewhat frequency dependent.

II. Test Sample Description

Some of the samples tested are shown in Figs. 2 and

3. The ASTM A36 steel samples shown in Fig. 2 were cut

from a section of the former bypass shroud on the BWG

antenna. It was previously reported [2] that bare-metal-

surface ASTM A36 samples had average conductivity val-

ues of about 0.01 x 107 mhos/m, while samples painted
with thermal diffusive white paint had worse conductivi-

ties of about 0.0036 x 107 mhos/m.
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For this article, a study was made to find ways to im-

prove the electrical conductivity of ASTM A36 steel by

treating the surface with (1) a zinc-plating process and (2)

spray painting with cold galvanized paint. For the zinc-
plating process, a black-colored dye was used. The use of

black dye color was arbitrary, and clear zinc plating could
have been specified instead.

Another steel material tested was type 1018 steel (see

Fig. 3). This material was used to simulate flat surfaces

of steel mirror-support structures in the BWG antenna in

some of the shroud noise temperature tests performed at

the Microwave Test Facility (MTF) at Goldstone, Califor-
nia. This material was used for these MTF tests because

it was known to have dc conductivity and magnetic prop-
erties similar to ASTM A36 steel. It was also used because

it was readily available in flat sheet stocks at Goldstone.
This material was tested with and without white diffusive

thermal paint.

Aluminum material is sometimes treated with a type of

surface treatment to prevent oxidation. Two types of alu-

minum samples with surface treatments were fabricated

and tested. These samples of aluminum were treated with

(1) irriditing and (2) anodizing processes (Fig. 3). In this
article, the term "irridite" will be used to describe the sur-

face treatment of aluminum samples or parts by a chemical

dipping process. Not generally well known is the fact that
irridite, yellow chemical film, and alodine are trade terms

referring to identical surface-treatment processes. Con-
fusion sometimes occurs between the terms alodine and

anodize, which are not equivalent processes. The former

involves a chemical dipping process, while the latter refers

to an electrochemical-oxidizing surface-treatment process.

III. Test Results

Table 1 shows a summary of the test results of the de-

scribed samples. As may be seen in Table 1, the type 1018

steel conductivities for unpainted and painted samples

were measured to be 0.0226x 107 and 0.0081 x 107 mhos/m,

respectively, at 8.420 GHz. These results may be com-

pared to 0.01 x 107 and 0.004 x 107 mhos/m for the ASTM

A36 structural steel unpainted and painted samples, re-
spectively.

The zinc-plating process on ASTM A36 steel

improved the conductivity from 0.01 x 107 to about 0.44

x 107 mhos/m, but it is still about 5 times worse than

type 6061 aluminum. As may be seen in the table, for

two of the samples, the galvanized-paint process made the
conductivity much worse than that for bare ASTM A36

steel and even worse than ASTM A36 steel painted with

thermal diffusive white paint. It is suspected that galva-

nized spray paint is not purely metallic and has lossy epoxy

compounds to make the surface more like a lossy dielec-

tric surface. It might seem that if the paints were more
highly conductive, then better results would be obtained.

However, it was shown in a previous article [2] that a very

high grade of silver paint only improved the conductivity

from 0.01 x 107 mhos/m for bare metal ASTM A36 steel
to 0.022 x 107 mhos/m when silver painted.

Table 1 also shows the results of aluminum samples

with surfaces treated with (1) irriditing and (2) anodiz-

ing processes. Irriditing caused no noticeable change in

the conductivity properties of bare aluminum, while an-

odizing only degraded the conductivity from 2.31 x 107 to

1.96 x 107 mhos/m, which is still acceptable. From previ-

ous tests [2], it was found that primer and thermal diffusive

white paint also did not significantly degrade the resultant

electrical conductivity of aluminum, but did significantly
degrade the conductivity of ASTM A36 steel.

Relative permeability values (relative to air) of the test
samples are shown in Table 1. It can be seen that the

steel materials are highly magnetic with relative perme-

abilities being in the 9000-10,000 range. For comparison,

aluminum and copper have relative permeabilities of unity,

while most types of stainless steel have relative permeabil-

ities of less than 1.10 [2].

It was pointed out by Vane [5] that conductive metals

having high permeability tend to have poor effective con-

ductivities due to the fact that high permeabilities cause
the skin depth to become very small. The effects of sur-

face roughness and surface layers (of paints and oxides)

are accentuated because, when skin depth is small, most

of the RF currents will tend to flow along the irregular sur-
faces and even partially inside the treated layers (oxides

and paints). Hence, it is not surprising that highly mag-
netic materials such as ASTM A36 and type 1108 steel

with painted layers and poor surface finishes tend to have

very poor conductivities. For materials with relative per-

meabilities close to unity, the skin depth is larger, and

RF currents will tend to flow through more volume of the

conductor rather than just at the surface. An equation

showing the relationship between skin depth and relative

permeability was given in [2].

IV. Conclusions

Test results showed that zinc plating the surface of

ASTM A36 steel improved the electrical conductivity of
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bare metal from 0.01 x 107 to 0.44 x 10 r mhos/m. For com-

parison, the conductivity was 0.0036 x 107 mhos/m for a

sample of this steel that was primed and painted with ther-

mal diffusive white paint. Even with this improvement, the

zinc-plated samples were still about 5 times worse than

aluminum. Galvanized spray paint is not recommended

because galvanized-painted ASTM A36 samples resulted
in conductivities about the same or much worse than sam-

ples with thermal diffusive white paint. It can be stated

that for highly magnetic steels with rough surfaces, the

plating process will help to improve the conductivity sig-
nificantly, but painting the surfaces with cold conductive

paints will not.

Either an irriditing or an anodizing process should be

considered for preventing oxidation of aluminum shrouds
or mirrors. If anodized aluminum material is chosen as

the material for future BWG shrouds, then it is recom-

mended that, for better optical lighting purposes, a clear

dye anodizing process should be specified.
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Table 1. Summary of test results of the cavity samples.

Description

Relative

perme-

ability a

Number Average surface Test Average surface

of samples roughness, frequency, resistivity,

tested pm GHz ohms/square

Effective

conductivity,

mhos/m

Comments

Type 1018 steel

Type 1018 steel, same

as above except painted

with primer and

Triangle #6 thermal

diffusive white paint

BWG antenna shroud

ASTM A36 bare steel

>9000 2 1.47 8.42221 0.38350 0.02261

(58 pin.) x l0 T

>9000 1 0.64 8.40200 0.63861 0.00813

(25 pin.) × 107

9985

BWG antenna shroud 9985

ASTM A36 bare steel,

with rust spots

BWG antenna shroud 9985

ASTM A36 bare steel,

rust spots

partially removed

BWG antenna shroud 9985

ASTM A36 steel,

primer only

BWG antenna shroud 9985

ASTM A36 steel,

primer and Triangle no. 6

thermal diffusive white paint

BWG antenna shroud 9985

ASTM A36 steel,

zinc plating (with

black dye)

BWG antenna shroud 9985

ASTM A36 steel, cold

galvanized spray paint

BWG antenna shroud

ASTM A36 steel, cold

galvanized spray paint

9985

1 >6.35

>(250 pin.)

2 12.7

(500 pin.)

1 12.7

(500 pin.)

8.42049 0.57737

8.42124 0.63401

8.42176 0.63288

0.00997

X 107

0.00830

x 107

0.00830

X 107

1 1.78-2.62 8.41173 0.63859 0.00814

(70-103 _in.) X 107

1 2.36 8.43990 0.91065 0.00400

(93 pin.) X 107

8.41959 0.086503 6.35

(250 pin.)

0.4442

× 107

2 2.79-4,27 8.41544 3.36860 0.000293

(110-168 pin.) X 107

3 3.18 8.41399 0.85831 0.00451

(125 pin.) X 107

Paint had a big
effect.

This compares well

with the 0.01 x 107

value in [2].

Rust removal

had no effect.

Compare this

with 0.01 x 10 r

for bare metal.

Compare this with

0.0036 x 107

reported in [2].

Significant

improvement over
bare metal.

Very bad conduc-

tivity might be due

to surface roughness

and paint.

About the same as

with thermal

diffusive white paint.

a The relative permeabihty values axe relative to air.
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Table 1 (cont'd)

Description

Relative Number Average surface Test Average surface

perme- of samples roughness, frequency, resistivity,

ability a tested #m GHz ohms/square

Effective

conductivity,

mhos/m

Comments

Copper

Bra_s

Aluminum6061-T6

Aluminum 6061-T6,

irridite

Aluminum 6061-T6,

black anodized

type IIb

Aluminum 6061-T6,
black anodized

type III c

1.000 3 0.71 8.42033 0.02666 4.6770

(28 #in.) x 107

1.000 1 0.53 8.42443 0.05020 1.3197

(21 _in.) X 107

1.000 2 0.33 8.42422 0.03792 2.3129

(13 #in.) X 107

1.000 1 0.41 8.42485 0.03790 2.3159

(16 #in.) x l0 T

1.000 1 0.46 8.42458 0.04122 1.9574

(18 #in.) x 10 _

1.000 1 0.46 8.42358 0.04121 1.9585

(18 #in.) X 107

b Type II refers to an anodizing process that treats the surface only.

c Type III refers to an anodizing process that typically goes about 0.013 mm (0.5 mil) into the metal.

Fig. 1. The X-band cavity.

39



(a) (b)

(c) (d)

Fig. 2. Samples of the tested ASTM A36 shroud material (10.16 cm x 10.16 cm): (a) painted
wlth prlmer and Trlengle #6 thermal dlffuelve whlte paint; (b) bare metal; (c) zlnc-platlng (wlth
black dye) surface treatment; end (d) gelvanlzed spray-palnted surface.
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(a) (b)

¢

¢" ¢ ¢

(c) (d)

Fig.3. Othersamplecandidateshroudmaterialstested(10.16cmx 10.16cm):(e)type1018
steelbaremetal;(b)aluminum6061;(c)aluminum6061withIrrldltesurfacetreatment;and(d)
aluminum6061withblackanodizedsurfacetreatment.
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A recent discovery shows that a high-dielectric constant, low-loss, solid material

can be made into a ribbon-like waveguide structure to yield an attenuation constant

of less than 0.02 dB/m for single-mode guidance of millimeter/submillimeter waves.

One of the crucial components that must be invented in order to guarantee the low-

loss utilization of this dielectric-waveguide guiding system is the excitation coupler.

The traditional tapered-to-a-point coupler for a dielectric rod waveguide fails when

the dielectric constant of the dielectric waveguide is large. This article presents a

new way to design a low-loss coupler for a high- or low-dielectric constant dielectric

waveguide for millimeter or submillimeter waves.

I. Introduction

A recent discovery shows that a high-dielectric con-

stant, low-loss, solid material, such as TiO (ez/c0 = 100,

tan 6 = 0.00025) or Rexolite (el/e0 = 2.55, tan/5 = 0.001),
can be made into a ribbon-like waveguide structure to yield

an attenuation constant of less than 0.02 dB/m for single-

mode guidance of millimeter or submillimeter waves [1].

This discovery provides the impetus to perfect a practical

low-loss guided transmission system for these short wave-

lengths. As a comparison of loss, the attenuation constant

z Independent consultant to the Ground Antennas and Facilities En-
gineering Section.

of a WR28 copper waveguide is 0.58 dB/m at 32 GHz.
One of the crucial components that must be invented in

order to guarantee the low-loss utilization of this dielectric-

waveguide guiding system is the excitation coupler.

A conventional technique to minimize the coupling loss

of an excitation coupler is to taper the coupling end of a di-

electric waveguide to a very narrow, sharp apex [2]. How-

ever, this method fails when the relative dielectric constant

of the dielectric waveguide is much greater than unity, the

free-space value. Another technique is to shape the cou-

pling end of the dielectric waveguide into a cusp-like form

[3]. This cusp design, which is based on the direct ap-
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